3径間連続桁の解体における数値解析と施工

Numerical Analysis and Construction for Demolition of 3-diameter Continuous Girders

(株)砂子組	OIE	員	山口	紗季 (Saki Yamaguchi)
(株)砂子組	正	員	丸山	欣一 (Kinichi Maruyama)
(株)砂子組	正	員	幌村	瑛奈 (Ena Horomura)
(株)砂子組	正	員	近藤	里史 (Satoshi Kondo)
(株)砂子組	正	員	田尻	太郎 (Taro Tajiri)

1. はじめに

本橋梁は、国鉄(現JR)軌道を跨ぐ跨線橋として、 1971年と1980年に下り線側2車線と上り線側2車線が 架設された.その後1994年に線路付け替え工事が実施 され軌道位置が移動した事により、立体交差橋梁として の必要性が失われたため、道路の平面化を図る目的で、 撤去の運びとなった.

等橋梁は橋長 88.5 m および 96.5 m の 3 径間連続桁橋 A~D 橋と, 59 m の 2 径間連続桁橋の E 橋からなる. 前年度までに R 側下り車線と C 橋は既に撤去されたの で、本工事は、A、B と D、E 橋の L 側車線の解体撤去 にかかわるものである.

当初計画案では、ベントにより桁を無応力状態に保ち、 撤去過程における曲げモーメントの変動を解消する工法 であったが、施工ヤードの問題からベント仮設が困難で あり、起点側から順次、舗装・高欄撤去 → 床版・桁撤 去を行うのが現実的であった.ベントを併用しない連続 桁の解体で問題になるのは、撤去部分が残存部に伝えて いた負のモーメントが解放され、残存部の正のモーメン トが増加する事である.そのために本工事では3次元フ レームによる事前解析を行い、施工の安全性を担保した.

工事対象は全て等径間の連続桁であり,2 径間連続桁 である E 橋のモーメント変動は,3 径間連続である他橋 より小さいと考えられるため,解析は D 橋に対して行 った.構造形式は単純桁である.

2. 解析モデル

図-3 に解析モデルの全体図を示す.部材は全て 3 次 元梁要素である.断面剛性は,架設時のマイクロ資料か ら全ておこした.主桁の色分けは,断面変化点である.

図-4 に骨組図を示す.同図に示すように桁端部は, ゲルバー桁となっており,主桁への支点反力の伝達には, 主桁中立軸と支点との距離に起因する立体効果が無視で きない恐れがあった.

そのためゲルバー部,端対傾構,中間対傾構,横桁,

支点上対傾構,横構および主桁が,設計上の中立軸位置 で接続されるよう,設計高さに部材を配置し,その間を 剛体要素で接続して,3次元の立体効果を考慮した.た だし主桁の断面変化点における中立軸のずれは,数mm ~10mm 程度と小さかったため,それらは無視した. 対傾構と横構の部材端条件はピン結合とし,それ以外は 剛接である.橋長が十分長いため,縦断勾配の影響は小 さいとして無視している.

表-1 に鋼材の弾性係数と単位体積重量を,表-2 に鋼 種と許容応力度および降伏点,許容応力度に対する降伏 点の安全率を示す.

表-1 鋼材の弾性係数,単位体積重量

	弾性係数 (N/mm ²)	単重 (kN/m ³)
鋼材	205000	77

表-2	鋼種,	許容応力度および降伏点

	鋼種	許容応力度 (N/mm ²)	降伏点 (N/mm ²)	安全率
主桁	SM490Y	210	355	1.69
それ以外	SS400	140	235	1.68

図-4 骨組図

3. 鋼重および床版重量

鋼重は、各部材の断面積に表-1の単位体積重量をかけて等分布荷重とし、梁要素に線分布荷重として載荷した.なお添接部品の重量を考慮するため、鋼重は2割増しを原則とする.

床板重量は,図-5 に示すように奥行き単位幅当りの 横断方向モデルを別途作成し,張出付の4径間連続桁と して計算して主桁への荷重分配を行った.同図の支点反 力を,単位長さ当りの主桁への荷重分配とし,主桁要素 へ線分布荷重として載荷する.表-3 に床版重量の内訳 を示す(マイクロ資料より).

4. 解析結果

断面力図と応力図を,最も荷重分担の大きかった歩道 張り出しを持つ Gl 桁について,完成形 → 起点側径間 撤去 → 中央径間撤去の順に示す.主桁以外の部材の応 力分担は軽微だったため省略する.

表-3 床版重量の内訳

		単重	厚	単重
		(kN/m^3)	(m)	(kN/m)
舗装		22.5	0.070	1.575
縁石		24.5	0.270	6.615
床版	C1	24.5	0.380	9.310
	C2	24.5	0.210	5.145
	C3	24.5	0.410	10.045
	C4	24.5	0.480	11.760
	C5	24.5	0.210	5.145
	C6	24.5	0.430	10.535
(kN∕m)	G1	G2	G3	G4
ハンチ	0.980	0.882	2.450	2.744
鋼重	3.626	3.626	3.626	3.626
高欄	0.392			0.392

N : 軸力

図-6 において実線は完成系の断面力を表し、点線は 仮に全径間で舗装と高欄を撤去した場合、すなわち床版 +主桁による断面力である.舗装・高欄の撤去による重 量軽減の効果は、特に正の曲げモーメントに対して、2 割程度の断面力の減少をもたらすが、ある径間を撤去し た場合の負の曲げモーメントの解放による影響は、それ

以上に大きい.

図-7,8の点線は、1step前の舗装+高欄+床版+主桁 による断面力であり、実線は隣接径間撤去直後の断面力 である.起点側径間を撤去すると終点側径間の正の曲げ モーメントは3割ほど減少するが、中央径間のそれは約 3倍に増える.続いて中央径間を撤去した場合は、終点 側径間の曲げモーメントは約2.5倍弱になり、完成形の それを1.4倍程度上回る事になる.

5. 応力照査結果

応力照査は曲げ引張,軸引張,曲げ圧縮,局部座屈, 全体座屈,せん断応力について行った³⁾. 面外曲げ作用 が軽微である事,軸力とせんだん力が小さい事から,2 軸応力状態と組合わせ応力状態の照査は省略した. 結果 を図-9~11 に示す.

完成形では作用応力は、最大で許容応力度の8割程度 であり、活荷重を考慮しても妥当な設計だったと考えら れる(図-9).

起点側径間撤去直後(図-10)すなわち 舗装+高欄+ 床版+主桁による応力では、中央径間中央部で桁上縁圧 縮応力に、許容曲げ圧縮応力度の 1.39 倍の超過が見ら れる.

中央径間撤去直後(図-11,舗装+高欄+床版+主 桁)では,終点側径間のスパン 1/4 の近傍で,やはり桁 上縁圧縮応力が許容曲げ圧縮応力度を,1.44 倍超過する.

応力最大点が径間中央にならないのは,主桁の断面変 化構成と,図-4 に示したように,主桁中立軸と支点と の距離もモデル化した効果だと考えられる.

起点側および中央径間を撤去して残る終点側径間は, 単純桁になるはずであるが,図-8 では起点側支点の曲 げモーメントが0ではなく,無視できない大きさを持っ ている.設計上の中立軸位置で部材が接続されるよう, 3次元の立体効果を考慮した結果である.

6.まとめ

起点側から径間ごとに順次,舗装・高欄撤去 → 床 版・桁撤去を行ったとすると,横倒れ座屈に関して最大 で1.44 倍の許容応力度超過となった.

- (1) 解体時の作用荷重は短期荷重と考えられるので、 一般的な仮設時の許容応力度割り増し 1.5 を準用 すると、許容される。
- (2) 竣工は約 50 年前の橋梁であるが、完成形の応力 状態が健全で、きわめて厳密に限界状態設計法を 実践した設計であったと考えられる事から、大き な残留歪み等はないと予想できる。
- (3) 短期荷重の割り増しの根拠は,許容応力度に対す る降伏点の安全率にあるとすれば,主桁鋼材の安 全率は,表-2 に示したように 1.69 あり, 1.44 倍の 応力超過に対して十分大きい.

に保つ必要はないと判断し,ベントを併用しない現実的 な工法を採用した.

[参考文献]

- 当橋梁のマイクロ資料.発注者の意向で詳細は割 愛する.
- 2) 道路橋示方書・同解説 I 共通編, II 鋼橋編, (社)日本道路協会, 2012年.