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1．はじめに 
 シンプレクティック時間積分法は、高い実行速度と無

条件安定な精度が保証され、保存系の範囲ではほぼ確立

された運動方程式の数値積分法である 1)。ここで保存系

とは、質点に働く力が変位だけに依存する系の事を言い、

そこでは力学的エネルギー保存則が成立する。M，K を

質量，剛性マトリックス、q を変位ベクトル、･ を時間

微分として、構造系の自由振動方程式、 
 

(1) 
 
は、保存系の一種である。 
 多くの弾塑性解析では図-1 のような、バイリニアな

応力－歪み関係が仮定される。有限要素法解析を念頭に

おけば、応力－歪み関係は適当な剛性マトリックスと変

位ベクトル q から定義できるので保存力であり、ポテン

シャルエネルギー1/2×qt K q が存在する。ただし時刻歴

挙動を考慮すると、無減衰であっても履歴減衰が生じ、

通常の保存系とは言い難いが、時間的に局所的に見れば

保存系と考えられる。また衝撃載荷を理想化し撃力とみ

なせば、載荷の瞬間に速度が不連続に変化するだけなの

で、系が無減衰なら載荷時間以後は保存系である。 
 ここでは撃力により理想化した無減衰な弾塑性衝撃応

答解析を行い、ニューマーク β 法（β＝1/4，無条件安

定）および 4 次のルンゲクッタ法との結果比較により、

2 次の陽的シンプレクティック法の有用性を確認した。 
 
2．各解法の計算手続き 
 数値的時間積分の時間ステップ幅を τで表す。 
 
1) 4 次のルンゲクッタ法 
 
 
 
 
 
 
 
 ただし、 

j＝0～2。j＝0，1 で α＝1/2、j＝2 で α＝1。 
v(0)：時刻 t の速度ﾍﾞｸﾄﾙ，q(0)：時刻 t の変位ﾍﾞｸﾄﾙ。 
V：時刻 t＋τの速度，Q：t＋τの変位。 
K(j)：j＝0 は t 時点の剛性ﾏﾄﾘｯｸｽ，j≠0 は t＋τ/2。 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
2) ニューマーク β法（β＝1/4），2 次精度 
 
 
 
 
 
 ただし、 

E：単位行列，K：t 時点。 
a：t の加速度，v：t の速度， q：t の変位。 
A：t＋τ の加速度。V：t＋τ の速度，Q：t＋τ の変位。 

 
3) 2 次の陽的シンプレクティック法 
 
 
 
 
 ただし、 

v：t の速度， q：t の変位。 
v'：t＋τ/2 の速度，q'：t＋τ/2 の変位，K'：t＋τ/2。 
V：t＋τの速度，Q：t＋τの変位。 

 
3．計算例としたモデルの概要 
 図-2 に、計算例としたモデルを示す。断面積 A＝1 m2，

全長 L＝10 m の鋼材柱を定歪み棒要素で 100 分割し

（要素長 Le＝0.1 m）、柱頭に衝撃交番載荷を与えた。 
 材料定数は、弾性係数 E＝200000 N/mm2，降伏点 σy

＝140 N/mm2（SS400 級），限界歪み εu＝5000 μ，密度

ρ＝7700 kg/m3。 
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図-1 バイリニアな応力－歪み関係の模式図 
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 質量マトリックス M は、1 要素の質量を両端節点に

集めた Lumped Mass とし、節点質量は m＝ρALe/2＝385 
kg。M の非零要素は、対角成分のみである。 
 1 要素の固有周期 T(s)を、 
 

(2) 
 
で計算すると約 0.02 ms（1.962×10-5 s）となり、ここか

ら時間ステップ幅を τ＝T/100 と T/10 の 2 ケースとして

計算を行った。約 1/50000 ms と 1/5000 ms。 
 衝撃交番載荷は自由端節点への撃力としたが、応力波

の伝播速度は vσ＝(E/ρ)1/2＝5096 m/s で、自由端→固定端

→自由端の往復には TL＝4 ms（3.924×10-3 s）かかる。 
 交番間隔は TL とし、解析時間は応力波が 5 往復する

0.02 s とした。 
 撃力は自由端節点の速度が Δv＝20 m/s だけ不連続に

変化する大きさとした。これは mΔv＝7700 kg･m/s の運

動量を与える撃力である。 
 図-3 に仮定したバイリニアな応力－歪み関係を示す。

計算値が限界歪み εu を超えた時には、計算終了とした。 
 
4．塑性化，除荷の判定 
 2.1)，3)に示したルンゲ-クッタ法と陽的シンプレクテ

ィック法は陽解法と陽的解法であり、t と t＋τ/2 時点の

剛性マトリックスを使用する。t と t＋τ/2 の間で図-3 に

示した塑性化，除荷が起こった場合、剛性マトリックス

K を更新する必要がある。ここで歪み，歪み速度等は要

素両端の節点変位と速度等から計算できる。 
 陽解法であるルンゲクッタ法は、速度と変位を同時に

更新するので、ε' を歪み速度として各更新ステップで ε 

(t)と ε' (t)，ε (t＋τ/2)と ε' (t＋τ/2) の 4 つがわかる。そこ

で、これらから歪み ε を時間に対して 3 次補間し、図-4
のように判定した。ε が塑性化歪みを超えれば弾性→塑

性，塑性状態で歪み速度 0 の極値点で除荷が起こるとし、

K を更新する。除荷の場合、除荷時の歪みから傾き E
の直線を降ろし、σ＝0 軸との交点を新たな残留歪み ε0

として更新する（図-3）。最終的には t＋τ 時点の K と

ε0 の更新も必要である。なお図-4 のように 2 回の塑性化

が起こる場合は、時間ステップ幅が大きいとして計算を

終了した。陽的解法であるシンプレクティック法では、

変位と速度を τ/2 間隔で交互に更新するので、ε (t)，ε (t
＋τ/2)，ε' (t) 、または ε (t＋τ/2)，ε (t＋τ)，ε' (t＋τ)から 2
次補間を行い、同様に判定した。 
 K の更新は、要素－節点対応表に従い状態遷移を起こ

す要素に該当する K の部分から、弾性→塑性では要素

剛性マトリックスを引き、塑性→弾性では足すという操

作を行った。なおルンゲクッタ法とシンプレクティック

法では、要素歪みから直接等価節点力を算出し要素－節

点対応表に従い重ね合わせたので、K を用いていない。 
 2.2)のニューマーク β 法では、陰解法の性質上 K は t
時点のものを用いなければならない。そこで最大ステッ

プ幅 τ から状態遷移要素の数をカウントする 2 分法探索

を行い、塑性点と除荷点に達する時間幅 τ' の特定を行

った。2 分法 の打切は τ×10-6である。塑性点の場合、 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
次ステップの状態は歪み速度の正負で、除荷点の場合は

歪み速度 0 のため、歪み加速度の正負で決定する。 
 
5．計算結果（変位） 
 最も変動の大きい柱頭変位を図-7 に示す。τ＝T/100
と T/10 のルンゲクッタおよび T/10 のシンプレクティッ

ク法はほとんど重なり、違いがみられない。T/10 のニ

ューマーク β 法には位相の遅れがみられ、振幅も若干

異なる。終端の 0.4 ms を図-8 に拡大して示す。ここで

も T/100 と T/10 のルンゲクッタは完全に重なる。シン

プレクティック法には、わずかに位相の進みがみられる。 
 β＝1/4 のニューマーク法とシンプレクティック法の

位相のずれは、無条件安定な解法でみられる現象である。

一方そうでないルンゲクッタ法では位相のずれではなく、

振幅の変化がみられるはずであるが、T/100 と T/10 が

ほとんど完全に一致する事から、T/100 のルンゲクッタ

法の数値解は、厳密解に近い事が示唆される。 
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図-3 仮定した応力－歪み関係 

図-2 計算例としたモデル 

図-4 時間に対する歪み補間の模式図 
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6．計算結果（エネルギー） 
 
 
 
 
 
 
 
 
 
 
 
 
 塑性化が起こると履歴減衰が生じ、剛性マトリックス

によるポテンシャルエネルギー計算が不便になるため、

次式により構造への吸収エネルギーU を計算した。これ

は図-6 のハッチ部の面積である。j を要素番号として、 
 

(3) 
 
 V を運動エネルギー，E を全エネルギーとすれば、U
には履歴減衰による損失エネルギーも含まれるので、 
 

(4) 
 
は、外力による仕事がない限り一定になる。 
 図-9 に E の結果を示す。ここでも T/100 と T/10 のル

ンゲクッタ法とシンプレクティク法はほとんど一致し、

ニューマーク法だけが若干違う。 
 
7．計算結果（安定性） 
 撃力載荷後は、次の載荷まで全エネルギーE は一定で

なければならない。エネルギー変動を載荷時刻からの差

として図-10，11 に示す。 
 T/10 のルンゲクッタ法は載荷直後の変動増加を除け

ば、載荷時刻間ではわずかに減少傾向にあり、解の縮退

傾向を示す。しかし変位は、他の解法の変位挙動と概ね

一致し、計算の安定性は保持されているものと考えられ

る。ここからも T/100 のルンゲクッタ法の解は、厳密解

に近い事が示唆される。 
 シンプレクティク法は、K の要素を Kij とした時、 
 

(5) 
 
で表されるエネルギーE' を持つ近似系の厳密解を与え、

これを保存する。v＝(vi)は速度ベクトル。 
 E' と E の差を δ とし、Kii～EA/Le，mi～ρALe，τ/T＝
1/10 を考慮すると、運動エネルギーとの比は、常に δ／
V～(τ/T)2＝1/100 程度となり、全エネルギーとの比 δ／E
は常にこれより小さい。載荷直後に大きく変動し一定値

まわりの振動になるのは、同法の無条件安定性の現れと

考えられる。 
 ニューマーク法の変動は、振幅は大きくなるものの振

動的である。無条件安定性の現れと考えられる。 
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8 図-10 エネルギー変動（ﾙﾝｹﾞｸｯﾀ、ｼﾝﾌﾟﾚｸﾃｨｯｸ） 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8．計算結果（エネルギーの保存性） 
 以後、T/100 のルンゲクッタを厳密解とみなす。図-12
に同法の全エネルギーと各解法との差を、相対誤差(％)
として示した。T/10 のルンゲクッタの誤差は最も小さ

く信頼できる。シンプレクティク法は先に述べた理由か

ら、1 ％程度の値で推移する。ニューマーク法の誤差は

増加傾向にあり、エネルギーの保存性は認められない。 
 
9．計算結果（応力－歪み履歴，自由端要素） 
 図-13，14 は、厳密解（T/100 ﾙﾝｹﾞｸｯﾀ）の応力－歪み

履歴に対する、各解法の T/100 と T/10 の結果である。 
 T/100 としてもニューマーク法は厳密解に一致しない

が、シンプレクティク法は一致する。両解法で前者の

T/100 と T/10 の違いは大きいが、後者は小さい。 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
10．まとめ  
 
 
 
 
 
 
 
 表-2 より陽的シンプレクティック法は、非常にコス

トパフォーマンスの良い解法と考えられる。 
 なおルンゲクッタ法で T/100 と T/10 の結果は一致す

るが（図-13）、シンプレクティック法では一致しない

のは（図-15-a)と b)）、解法精度 4 次と 2 次の違いによ

る可能性もあるが、4 次の陽的シンプレクティック法は

すでに知られており、2.3)のようなシンプルな計算アル

ゴリズムである。 
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図-12 エネルギー誤差 

図-14-a) 応力－歪み（ﾆｭｰﾏｰｸ T/100，ﾙﾝｹﾞｸｯﾀ T/100） 

図-13 応力－歪み（ﾙﾝｹﾞｸｯﾀ T/10，ﾙﾝｹﾞｸｯﾀ T/100） 

図-14-b) 応力－歪み（ﾆｭｰﾏｰｸ T/10，ﾙﾝｹﾞｸｯﾀ T/100） 

図-15-a) 応力－歪み（ｼﾝﾌﾟﾚｸﾃｨｯｸ T/100，ﾙﾝｹﾞｸｯﾀ T/100） 図-15-b) 応力－歪み（ｼﾝﾌﾟﾚｸﾃｨｯｸ T/10，ﾙﾝｹﾞｸｯﾀ T/100） 
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T/100 T/10 T/100 T/10
ﾙﾝｹﾞｸｯﾀ法 4次 4638 835 101936 10193 0.064
ﾆｭｰﾏｰｸβ法 2次 22842 2949 102110 10362 0.254
ｼﾝﾌﾟﾚｸﾃｨｯｸ法 2次 1708 404 101936 10193 0.028

精度
実行時間(ms) Step数 Step当り

平均(ms)

表-1 各解法の実行速度 

精度
実行速度
(ms/Step)

無条件
安定性

ｴﾈﾙｷﾞｰ
保存性

時刻刻み
（感度）

ﾙﾝｹﾞｸｯﾀ法 4次 0.064 なし なし 極めて小
ﾆｭｰﾏｰｸβ法 2次 0.254 保証付き なし 大
ｼﾝﾌﾟﾚｸﾃｨｯｸ法 2次 0.028 保証付き 保証付き*) 小

表-2 各種解法の性能比較 

*)：近似ｴﾈﾙｷﾞｰに対するもの． 


