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1．はじめに 
 ここではベクトルを、q＝(q1，q2，･･･，qn)などで略

記する。質点に働く力が変位 q だけに依存する時、力を

保存力、そのような質点系を保存系と呼ぶ。M，K を質

量，剛性マトリックス、q を変位ベクトル、･ は時間微

分として、構造系の自由振動方程式、 
 

(1) 
 
は、保存系の一種である。 
 保存系の数値的近似解がシンプレクティック法で計算

可能である事はほぼ確立されており、時間推進演算子を

使って示されるが 1)、保存系以外への見通しは良くない。 
 そこでシンプレクティック変換で保存系の近似解が可

能な事を Hamilton-Jacobi 方程式*)を利用し、より定性的

に示し、保存系以外への適用を容易にする定式化を検討

した。 
 保存力はポテンシャル U(q)から導かれる。力学的エ

ネルギーの表式をハミルトニアンと呼び、H(p，q)で表

す。保存系のハミルトニアンは、 
 

(2) 
 
の形に書ける 2)。ここで mj，pj は j 番目の質点の質量と

運動量、n は系の自由度。(2)からは正準形式：(dq/dt，
dp/dt)＝(∂H/∂p，－∂H/∂q)により、運動方程式と同等な

正準方程式が得られる 2)。保存系の場合は、 
 
 

(3) 
 
 
 
となる。変換 T：(p，q) → (P，Q)を行い、それが正準

形式を不変に保つときシンプレクティック変換と呼ばれ
2)、変換 T は母関数と呼ばれる、あるタイプの関数 S(p，
Q)などから、 
 
 

(4) 
 
 
 
などの形で定義される 2)。 
 変換前のハミルトニアン H(p，q)と変換後の H'(P，Q)

は、次の関係にある 2)。 
 

(5) 
 
2．2 次の陽的シンプレクティック法 
 ある時刻 t の運動量と変位を(p(t)，q(t))とする。 (p(t)，
q(t))から時間間隔 τ 後の(p(t＋τ)，q(t＋τ))への変換 T を

保存系で考える。以後、(p(t)，q(t))＝(p，q)，(p(t＋τ)，
q(t＋τ))＝(P，Q)と書く。 
 明らかに(p，q)と(P，Q)は同一の正準方程式(3)を満た

すので、変換 T：(p，q) → (P，Q)はシンプレクティッ

ク変換であり、H'＝H とした(5)の関係を満たす。それ

に(4)を適用した次式を、ここでは Hamilton-Jacobi 方程

式*)と呼ぶ。 
 

(6) 
 
 
 (6)を、変換の母関数 S(p，Q)に関する偏微分方程式と

みなし S(p，Q)を決定できれば時間間隔 τ 刻みの厳密解

が得られるが、一般には不可能である。そこで τ が微小

な場合に注目する。 
 τ が微小な場合、変換 T は次の形で近似できると考え

られる 1)。 
 
 
 

(7) 
 
 
 
 
 (7)は、以下の 2 つの変換の合成である。 
 
 

 (8)  
 
 
 
 
 

(9) 
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 (8)と(9)は、2 つのタイプの正準変換、 
 
 

 (10)  
 
 
 
 
 

(11) 
 
 
 
に対して、母関数を、 
 

(12) 
 
 
 

(13) 
 
の形に選べば得られる。 
 2 つのシンプレクティック変換の合成はシンプレクテ

ィック変換である事が知られている 2)。(7)の形を 2 次の

陽的シンプレクティック変換という 1)。 
 (6)に(7)を使えば、 
 

(14) 
 
であるが、(7)はあくまで近似なので、一般に(14)は成立

しない。 
 (14)の左辺から右辺を引いた残差を、 
 

(15) 
 
で定義する。 
 H を保存系のハミルトニアンの形(2)を使って成分で

書き下し、2 次の陽的シンプレクティック法の関係式(7)
を代入して整理すれば、(16)が得られる。 
 
 

(16) 
 
 ∇U(q')は U(q)の q'におけるの勾配を表し、･は内積。 
 
 ここで、 
 

(17) 
 
とすれば u0(q)は、q'から q への U(q)の増分から、q'にお

ける U(q)の接平面の増分を引いた形になっている。 
 すなわち、U(q)－U(q')の q'のまわりでのテーラー展開

の 2 次以上の項の和となる。(7)の第 1 式に注意すれば、

q－q'は τ/2 オーダーなので、u0(q)は(τ/2)2 のオーダーに

なる。そこで、 
 

(18) 
 
で u(q)を定義すれば、U(Q)についても同様であり R は、 
 

(19) 
 
の形に書ける。 
 以上の結果を R の定義(15)に戻せば、(2)も考慮して、 
 
 

(20) 
が得られる。 
 (20)はシンプレクティック変換(7)に対して Hamilton-
Jacobi 方程式(6)が成り立つ事を意味するので、右辺と同

じ形を持つハミルトニアン H'(p，q)、 
 

(21) 
 
については(7)が厳密に成り立つ事になり、時間間隔 τ
刻みの厳密解を得る事ができる。 
 従って 2 次の陽的シンプレクティック法は、無条件安

定な数値解法である。 
 u0(q)の具体的な形は、U(q')を q のまわりのテーラー

級数で展開し直せば、 
 
 
 
 
 
 
 

(22) 
の 形 に 書 け る 。 た だ し ∂s/∂q1α/∂q2β/ ･ ･ ･ /∂qnγ を 、

∂s/q1α/q2β/･･･/qnγで略記した。 
 ポテンシャル U(q)が剛性マトリックス K＝(Kij)で、 
 

(23) 
 
のように与えられる場合には(22)は、 
 

(24) 
 
となり、変換式(7)の第 1 式から q'－q＝(τ/2)v なので、 
 

(25) 
 
である。ここに v＝(vi)は、q(t)における速度 v(t)。 
 

*) オリジナルの形ではない 2)． 
 
3．陽的シンプレクティック法の利点 
 (7)による数値的時間積分の計算手順は、時間刻みを
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τ/2 とした 1 次のオイラー法を 2 段重ねたものと実質的

に同じである。陽解法と同程度の実行速度を期待できる。 
 しかし変換式の両辺に、t，t＋τ/2，t＋τ 時点の項が入

り混じっているので、シンプレクティック法は陰解法で

ある。 
 次に、ハミルトニアン(2)で表される保存系をもとの

系、ハミルトニアン(21)で表される保存系を近似系と呼

ぶ事にする。 
 保存系においてハミルトニアンは系のエネルギーを表

し、それは初期条件で決定される、時間に対する定数だ

った。 
 (2)と(21)を比べると、差は微小とした τ2 のオーダーの

違いしかなく、2 次の陽的シンプレクティック法は(21)
の厳密解を与えた。 
 従って、近似系の数値的厳密解を、時間に対して 2 次

のエネルギー精度を持つ、もとの系の数値的近似解とし

て採用できる事になる。 
 陽的シンプレクティック法の利点を以下に述べる。 
 

1) 無条件安定な陰解法である。 
2) 陰解法であるが計算手続きは陽的。陰解法特有

の非線形ポテンシャルに関する繰り返し計算が

不要。 
3) 従って実行速度が速い。 
4) 2 次解法では、時間積分ステップ幅 τの 2 次精度

の解が保証される。 
 
4．1 次の陽的シンプレクティック法 
 陽解法である 1 次のオイラー法と計算手順がよく似た、

1 次精度のシンプレクティック法も可能である。次式を

1 次の陽的シンプレクティック法と呼ぶ。 
 
 

(26) 
 
 
 
 (26)は(10)のタイプの正準変換に対して、(12)の形の母

関数を選べば得られる。 
 2 次の場合と同様な計算を行えば、次のハミルトニア

ン J(p，q)の厳密解を与える事がわかる。 
 
 

(27) 
 
 しかし(27)の正準方程式は、 
 
 
 

(28) 
 
 
 
となり、その第 1 式から運動量 p が、 

 
(29) 

 
になる事がわかる。これは一般化運動量 2)である。 
 通常の運動量 mi･dqi/dt での表現を得るために、一般

化運動量の定義(29)を用いたルジャンドル変換 2)を行い、

さらにラグランジュ方程式 2)から運動方程式を計算する

と、 
 
 
 
 
 

(30) 
 
が得られる。 
 運動方程式(30)に対応するハミルトニアンが、 
 
 
 
 
 

(31) 
 
になるのは明らかであり、これを近似系のハミルトニア

ンとして採用できる。ただし u0(q)＝τ2u(q)。 
 u0(q)の具体的な形は、 
 
 
 
 
 
 
 

(32) 
 
 ポテンシャル U(q)が剛性マトリックスで与えられる

場合は、 
 

(33) 
 
となる。 
 1 次解法では、変換(26)で(27)のハミルトニアン J(p，
q)の厳密解を計算した後、一般化運動量の定義(29)から

通常の運動量に、 
 

(34) 
 
で変換すれば、(31)のハミルトニアン H'(p，q)を満たす

2 次精度の解が得られる。 
 そうしない場合は(27)の 1 次精度である。 
 
5．適用可能な応用例と考察 
 保存系の数値的近似解がシンプレクティック法で計算 
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可能である事はほぼ確立されている。 
 弾塑性解析では応力－歪み関係として、図-1 のよう

にバイリニアやトリリニアな形が仮定される事が多い。 
 有限要素法解析を念頭におけば、応力－歪み関係は適

当な剛性マトリックスと変位ベクトル q から定義できる

ので保存力であり、対応するポテンシャル関数を次式の

ように想定できる。 
 

(35) 
 
 ただし応力－歪み関係の時刻歴挙動を考慮すると、履

歴減衰が生じ、通常の保存系とは言い難い。 
 実際(35)の U0 は、各時刻における履歴減衰による損

失エネルギー，q0 はその時点での残留歪みを表す変位ベ

クトル，K(p)は塑性化した要素を考慮した、初期状態か

ら更新された剛性マトリックスであり、t は転置を表す。 
 例えば図-1 では載荷経路 O→A→B までは一つのポテ

ンシャル UOAB と考えられるが、B 点で除荷が起こると

経路 B→C→B→D で別のポテンシャル UBCBD に切り変

わったと考える必要がある。何故なら、B での除荷も

UOAB で表せるならば、B 近傍の除荷経路は B→A とな

らなければならないからである。 
 けっきょく図-1 では、UOAB，UBCB'，UBCBD，UDEF，

UFG の 4 つのポテンシャルを想定する必要がある。4 つ

のポテンシャルが切り変わる時間は未知である。 
 しかしながら力学系において、任意の時刻に、任意に

力を切り変える操作は許されるはずである。このように

時間に対して区分的なポテンシャルとなる場合でも、

(35)に示すように、ポテンシャル関数は変位 q によって

決定されるので、時間的に局所的に見れば保存系である

と考えられる。 
 従って無減衰な弾塑性解析にシンプレクティック法は

適用できるはずである。 
 また無減衰な系で衝撃載荷を理想化し撃力とみなせば、

載荷の瞬間に速度だけが不連続に変化し、それ以後は、

載荷の瞬間に変化した速度を初期条件とする保存系とみ

なせる。 
 以上より、撃力を受ける無減衰な弾塑性衝撃応答解析

を行えば、シンプレクティック法の有用性を確認できる

と考えられる。 
 
6．まとめ 
 シンプレクティック時間積分法は、高い実行速度と無

条件安定な精度が保証され、保存系の範囲ではほぼ確立

された運動方程式の数値積分法である。 
 今回、時間推進演算子に依存しない形でそれらの特徴

をより定性的に、より簡潔に示せたので、同様な方法で

地震力などの時間依存外力を有する系にも、一次または

2 次の陽的シンプレクティック法を拡張する予定である。 
 また、撃力を受ける無減衰な弾塑性衝撃応答解析も行

う予定である。 
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図-1 バイリニアな応力－歪み関係の模式図 
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